Building thermal insulation simulation with QuickField

Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

QuickField Analysis Options

Magnetic analysis suite			
Magnetic Problems	Magnetostatics		
	AC Magnetics		
	Transient Magnetic		
Electric analysis suite			
Electric Problems	Electrostatics (2D,3D) and DC Conduction		
	AC Conduction		
	Transient Electric field		
Thermostructural analysis suite			
Thermal and mechanical problems	Steady-State Heat transfer		
	Transient Heat transfer		
	Stress analysis		

Open object interface

QuickField Analysis Options

Magnetic analysis suite		
Magnetic Problems	Magnetostatics	
	AC Magnetics	
	Transient Magnetic	
Electric analysis suite		
Electric Problems	Electrostatics (2D,3D) and DC Conduction	
	AC Conduction	
	Transient Electric field	
Thermostructural analysis suite		
Thermal and mechanical problems	Steady-State Heat transfer	
	Transient Heat transfer	
	Stress analysis	

Open object interface

Microsoft Excel spreadsheet for automatic calculation of the equivalent thermal conductivities of the air gaps in the frame (per ISO 10077-2:2012. Thermal performance of windows, doors and shutters)

QuickField Difference

Building thermal insulation simulation with QuickField

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

Verification: ISO 10211:2007 ISO 10077-2:2012

Show cases:

- 1. Heat losses through windows
- 2. Balcony slab
- 3. Flat roof to wall abutment
- 4. Shallow foundation thermal resistance

ISO 10211:2007. Thermal bridges in building construction

 $T = 0^{\circ}C, R_{surf.ext} = 0.06 \text{ m}^{2}\text{K / W}$ Concrete slab 13.5 Air T = 20^{\circ}C, R_{surf.int} = 0.11 \text{ m}^{2}\text{K / W}
Metal

Problem specification:

Tasks:

Calculate temperature in the reference points

http://quickfield.com/advanced/iso_10211_2007_case2.htm

SO 10077-2:2012. Thermal performance of windows, doors and shutters

http://quickfield.com/advanced/window_block.htm

This simulation example is a courtesy of D.V. Krajnov Kazan State University of Architecture and Engineering

2. Balcony slab

This simulation example is a courtesy of D.V. Krajnov Kazan State University of Architecture and Engineering

This simulation example is a courtesy of D.V. Krajnov Kazan State University of Architecture and Engineering

Calculation of the shallow foundation thermal resistance

Problem specification:

Ground	$\lambda_1 = 0.89 \text{ W/K} \cdot \text{m}$
Gravel	$\lambda_2 = 0.36 \text{ W/K} \cdot \text{m}$
Concrete	$\lambda_3 = 1 \text{ W/K} \cdot \text{m}$
Insulation plate	$\lambda_4 = 0.031 \text{ W/K} \cdot \text{m}$

Tasks:

Calculate thermal conductance $L^{2D} = \frac{Heat \ flux \ per \ length \ [W/m]}{Temperature \ difference \ [K]}$

http://quickfield.com/advanced/shallow_foundation.htm